Ecological and Energy Efficient Practices for Storm Water Management

Prof. Arup Kr. Sarma

B.P.Chaliha Chair Professor and Head
Civil Engineering Department
Indian Institute of Technology Guwahati
ASSAM, INDIA

Problem Faced in Urban Water Sector

Problem of more water

Flooding due to high water yield from the surrounding catchments because of conversion of forest land to urban area

Problem of inadequate drainage

Reduction in drainage capacity due to high sediment yield from the upper catchments and their deposition in the drains and river.

Problem of less water

Water scarcity due to rapid depletion of ground water for reduced recharge and extensive pumping

Energy Involved in Management

Energy in pumping flood water

Energy for clearing water way

Lower the GWT more is the energy

More energy to drive

3D View of Guwahati using DEM

Effects of Vegetative Cover on Water Yield

Present Outflow if **Outflow** if Maximum bareland all the outflow at and open vegetation pilot mix forest cover is watershed removed area are (cumec) from the covered watershed by (cumec) vegetation (cumec) 6.031 5.27 7.25

Effect of Deforestation (RUSLE)

Present annual sediment yield in tons/yr	Annual sediment yield in tons/yr if bare land and open mix forest area are completely covered by vegetation	Annual sediment yield in tons/yr if vegetation cover is removed completely from the watershed
20943.88	7903.27	289412.6

Settlement on Hills in Guwahati (2000)

Comparison of the watersheds

Lush green vegetation cover

Construction of house exposing subsoil strata to erosion

Runoff from the two watersheds

Clearer runoff from the undisturbed watershed

Sediment laden runoff from the disturbed watershed

Water samples from the watersheds

undisturbed watershed disturbed watershed

Validation and Generation using GCM

Such high intensity rainfall will cause

- High erosion in the hilly catchment
- High Peak flow
- Longer dry spell

An increase in the precipitation up to 20 % in the monsoon period could be seen by 2050's.

Watershed Management with Energy Efficient Optimal Ecological Management Practices

Sedimentation basin

Measures for runoff and sediment control

Measures for Controlling Water and Sediment Yield

Perforated Concrete Block

ROFTOP RAINWATER HARVESTING

HADGE FOR ROAD SIDE PROTECTION

FOREST LAND

RAIN WATER HARVESTING FOR URBAN FLOOD PEAK REDUCTION

Buildings and Drains in Hatigarh Watershed

Rain Water Harvesting Options

Summary of RWH Analysis (Contd.)

Parameters	BeforeSolution	After solution		
		Only RTRWH	RTRWH +10 FW/ha	RTRWH +20 FW/ha
Water level in drains (m)	1.78	1.62	1.44	1.29
Sediment in drain (m)	0.5	0.5	0.18	0.18
Depth of outlet drain (m)	1.5	1.5	1.5	1.5
Flood with sediment control(m)	0.78	0.62	0.11	0.00
% Reduction in Maximum Runoff Volume	-	12.2	21.54	30.87
% Peak Discharge Reduction	-	12.20	12.70	22.9
% Flood Reduction in Drains (without Sediment Control)	-	20.5	43.6	62.8
% Flood Reduction in drains (With Sediment Control, Studyed by Bracht and Sarma)	-	20.5	85	100

We need to go for Optimal

Ecological Management (EMP)Practices

Experimental Watershed

Denudation leads to

✓ Increase in total runoff volume: as high as 54 times

Denudation leads to

✓Increase in total sediment yield: as high as 21 times

Denudation leads to

✓ Changes in Chemical Composition s of Water

Integrated Planning and EMPs for Hazard Mitigation

Technical Core Committee (TCC) with 11 govt. departments was constituted in June 2010

Pilot Project Integrated Planning and EMPs for Hazard Mitigation

- ✓ October 2012: Completed the Conceptual DPR
- ✓ May 2013: Govt agreed to implement the EMP concept

- ✓ Plots under single ownership
 - ➤OPTEMP-LS model
- ✓ Plots under multiple ownership
 - ➤OPTEMP-LM model
 - >OPTEMP-LDM model

Work accomplished under pilot project planning

- ✓ August 2010: Initial concurrence from state govt.
- ✓ Had to defer due to sociopolitical disturbance
- √June 2011: Final
- concurrence from state govt.
- ✓ January 2012: Work order
- issued for land survey
- ✓ March 2012: Survey work

completed

Urban Carrying Capacity (SAFE)

(Sustainable Accommodation through Feedback Evaluation)

Step 1:Delineation of hilly urban area for which carrying capacity need to be calculated.

Step 2:Demarcation of non developable areas

Step 3:Computation of area required for different infrastructure and facilities

Step 4: Assessment of net area available for residential development

Step 5:Estimation of Floor Area Requirement per person

Based on socio-economic status of the prospective residents of the developable hilly area, an average floor area required for each person is determined.

Step 6:Carrying Capacity Calculation through iterative procedure

 $CC = (A_U - (A_{NDA} + A_{IF}[CC])) X FAR/S$

Step 7:Feedback Evaluation: Recheck for Drainage, Sediment yield etc.: If insufficient- Apply EMP(Technical Intervention), or adjust FAR

Ecological Management Practices

Detail Planning in Already Developed Area

